Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
1.
Int J Mol Sci ; 23(16)2022 Aug 13.
Article in English | MEDLINE | ID: covidwho-1987830

ABSTRACT

BACKGROUND: Infection caused by SARS-CoV-2 mostly affects the upper and lower respiratory tracts and causes symptoms ranging from the common cold to pneumonia with acute respiratory distress syndrome. Chemokines are deeply involved in the chemoattraction, proliferation, and activation of immune cells within inflammation. It is crucial to consider that mutations within the virion can potentially affect the clinical course of SARS-CoV-2 infection because disease severity and manifestation vary depending on the genetic variant. Our objective was to measure and assess the different concentrations of chemokines involved in COVID-19 caused by different variants of the virus. METHODS: We used the blood plasma of patients infected with different variants of SARS-CoV-2, i.e., the ancestral Wuhan strain and the Alpha, Delta, and Omicron variants. We measured the concentrations of 11 chemokines in the samples: CCL2/MCP-1, CCL3/MIP-1α, CCL4/MIP-1ß, CCL7/MCP-3, CCL11/Eotaxin, CCL22/MDC, CXCL1/GROα, CXCL8/IL-8, CXCL9/MIG, CXCL10/IP-10, and CX3CL1/Fractalkine. RESULTS: We noted a statistically significant elevation in the concentrations of CCL2/MCP-1, CXCL8/IL-8, and CXCL1/IP-10 independently of the variant, and a drop in the CCL22/MDC concentrations. CONCLUSIONS: The chemokine concentrations varied significantly depending on the viral variant, leading us to infer that mutations in viral proteins play a role in the cellular and molecular mechanisms of immune responses.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/immunology , Chemokine CXCL10 , Chemokines/blood , Humans , Interleukin-8 , Plasma
2.
Turk J Med Sci ; 51(SI-1): 3301-3311, 2021 12 17.
Article in English | MEDLINE | ID: covidwho-1884486

ABSTRACT

The COVID-19 pandemic has created a major alteration in the medical literature including the sepsis discussion. From the outset of the pandemic, various reports have indicated that although there are some unique features pertinent to COVID-19, many of its acute manifestations are similar to sepsis caused by other pathogens. As a consequence, the old definitions now require consideration of this new etiologic agent, namely SARS-CoV-2. Although the pathogenesis of COVID-19 has not been fully explained, the data obtained so far in hospitalized patients has revealed that serum cytokine and chemokine levels are high in severe COVID-19 patients, similar to those found with sepsis. COVID-19 may involve multiple organ systems. In addition to the lungs, the virus has been isolated from blood, urine, faeces, liver, and gallbladder. Results from autopsy series in COVID-19 patients have demonstrated a wide range of findings, including vascular involvement, congestion, consolidation, and hemorrhage as well as diffuse alveolar damage in lung tissue consistent with acute respiratory distress syndrome (ARDS). The presence of viral cytopathic-like changes, infiltration of inflammatory cells (mononuclear cells and macrophages), and viral particles in histopathological samples are considered a consequence of both direct viral infection and immune hyperactivation. Thromboembolism and hyper-coagulopathy are other components in the pathogenesis of severe COVID-19. Although the pathogenesis of hypercoagulability is not fully understood, it has been pointed out that all three components of Virchow's triad (endothelial injury, stasis, and hypercoagulable state) play a major role in contributing to clot formation in severe COVID-19 infection. In severe COVID-19 cases, laboratory parameters such as hematological findings, coagulation tests, liver function tests, D-dimer, ferritin, and acute phase reactants such as CRP show marked alterations, which are suggestive of a cytokine storm. Another key element of COVID-19 pathogenesis in severe cases is its similarity or association with hemophagocytic lymphohistiocytosis (HLH). SARS-CoV-2 induced cytokine storm has significant clinical and laboratory findings overlapping with HLH. Viral sepsis has some similarities but also some differences when compared to bacterial sepsis. In bacterial sepsis, systemic inflammation affecting multiple organs is more dominant than in COVID-19 sepsis. While bacterial sepsis causes an early and sudden onset clinical deterioration, viral diseases may exhibit a relatively late onset and chronic course. Consideration of severe COVID-19 disease as a sepsis syndrome has relevance and may assist in terms of determining treatments that will modulate the immune response, limit intrinsic damage to tissue and organs, and potentially improve outcome.


Subject(s)
COVID-19/immunology , Cytokine Release Syndrome , Inflammation , Lymphohistiocytosis, Hemophagocytic , Sepsis/complications , Chemokines/blood , Cytokines/blood , Humans , Lymphohistiocytosis, Hemophagocytic/immunology , Pandemics , SARS-CoV-2 , Sepsis/blood
3.
Sci Rep ; 12(1): 3954, 2022 03 10.
Article in English | MEDLINE | ID: covidwho-1740473

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) results in a variety of clinical symptoms ranging from no or mild to severe disease. Currently, there are multiple postulated mechanisms that may push a moderate to severe disease into a critical state. Human serum contains abundant evidence of the immune status following infection. Cytokines, chemokines, and antibodies can be assayed to determine the extent to which a patient responded to a pathogen. We examined serum and plasma from a cohort of patients infected with SARS-CoV-2 early in the pandemic and compared them to negative-control sera. Cytokine and chemokine concentrations varied depending on the severity of infection, and antibody responses were significantly increased in severe cases compared to mild to moderate infections. Neutralization data revealed that patients with high titers against an early 2020 SARS-CoV-2 isolate had detectable but limited neutralizing antibodies against the emerging SARS-CoV-2 Alpha, Beta and Delta variants. This study highlights the potential of re-infection for recovered COVID-19 patients.


Subject(s)
Broadly Neutralizing Antibodies/immunology , COVID-19/virology , SARS-CoV-2/immunology , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/immunology , Chemokines/blood , Cytokines/blood , Female , Humans , Male , Middle Aged , Patient Acuity , Young Adult
4.
J Trop Pediatr ; 68(2)2022 02 03.
Article in English | MEDLINE | ID: covidwho-1702787

ABSTRACT

Predictors of early diagnosis and severe infection in children with coronavirus disease 2019 (COVID-19), which has killed more than 4 million people worldwide, have not been identified. However, some biomarkers, including cytokines and chemokines, are associated with the diagnosis, pathogenesis and severity of COVID-19 in adults. We examined whether such biomarkers can be used to predict the diagnosis and prognosis of COVID-19 in pediatric patients. Eighty-nine children were included in the study, comprising three patient groups of 69 patients (6 severe, 36 moderate and 27 mild) diagnosed with COVID-19 by real-time polymerase chain reaction observed for 2-216 months and clinical findings and 20 healthy children in the same age group. Hemogram, coagulation, inflammatory parameters and serum levels of 16 cytokines and chemokines were measured in blood samples and were analyzed and compared with clinical data. Interleukin 1-beta (IL-1ß), interleukin-12 (IL-12) and interferon gamma-induced protein 10 (IP-10) levels were significantly higher in the COVID-19 patients (p = 0.035, p = 0.006 and p < 0.001). Additionally, D-dimer and IP-10 levels were higher in the severe group (p = 0.043 for D-dimer, area under the curve = 0.743, p = 0.027 for IP-10). Lymphocytes, C-reactive protein and procalcitonin levels were not diagnostic or prognostic factors in pediatric patients (p = 0.304, p = 0.144 and p = 0.67). Increased IL-1ß, IL-12 and IP-10 levels in children with COVID-19 are indicators for early diagnosis, and D-dimer and IP-10 levels are predictive of disease severity. In children with COVID-19, these biomarkers can provide information on prognosis and enable early treatment.


Subject(s)
Biomarkers , COVID-19 , Cytokines/blood , Biomarkers/blood , COVID-19/diagnosis , Chemokine CXCL10 , Chemokines/blood , Child , Fibrin Fibrinogen Degradation Products , Humans , Interleukin-12 , Interleukin-1beta , Prognosis , SARS-CoV-2 , Severity of Illness Index
5.
Cytokine ; 150: 155790, 2022 02.
Article in English | MEDLINE | ID: covidwho-1587975

ABSTRACT

BACKGROUND: Several immune mediators (IM) including cytokines, chemokines, and their receptors have been suggested to play a role in COVID-19 pathophysiology and severity. AIM: To determine if early IM profiles are predictive of clinical outcome and which of the IMs tested possess the most clinical utility. METHODS: A custom bead-based multiplex assay was used to measure IM concentrations in a cohort of SARS-CoV-2 PCR positive patients (n = 326) with varying disease severities as determined by hospitalization status, length of hospital stay, and survival. Patient groups were compared, and clinical utility was assessed. Correlation plots were constructed to determine if significant relationships exist between the IMs in the setting of COVID-19. RESULTS: In PCR positive SARS-CoV-2 patients, IL-6 was the best predictor of the need for hospitalization and length of stay. Additionally, MCP-1 and sIL-2Rα were moderate predictors of the need for hospitalization. Hospitalized PCR positive SARS-CoV-2 patients displayed a notable correlation between sIL-2Rα and IL-18 (Spearman's ρ = 0.48, P=<0.0001). CONCLUSIONS: IM profiles between non-hospitalized and hospitalized patients were distinct. IL-6 was the best predictor of COVID-19 severity among all the IMs tested.


Subject(s)
COVID-19/immunology , Cytokines/physiology , Hospitalization , Receptors, Cytokine/physiology , SARS-CoV-2 , Adult , Area Under Curve , Biomarkers , C-Reactive Protein/analysis , COVID-19/physiopathology , COVID-19/therapy , Chemokines/blood , Chemokines/physiology , Cytokines/blood , Female , Ferritins/blood , Fibrin Fibrinogen Degradation Products/analysis , Hospital Mortality , Humans , Interleukin-6/blood , Length of Stay/statistics & numerical data , Male , Middle Aged , Prognosis , ROC Curve , Receptors, Chemokine/physiology , Respiration, Artificial/statistics & numerical data , Severity of Illness Index , Treatment Outcome
6.
Theranostics ; 12(1): 290-306, 2022.
Article in English | MEDLINE | ID: covidwho-1579955

ABSTRACT

Coronavirus disease 2019 (COVID19), caused by SARS-CoV-2, is a complex disease, with a variety of clinical manifestations ranging from asymptomatic infection or mild cold-like symptoms to more severe cases requiring hospitalization and critical care. The most severe presentations seem to be related with a delayed, deregulated immune response leading to exacerbated inflammation and organ damage with close similarities to sepsis. Methods: In order to improve the understanding on the relation between host immune response and disease course, we have studied the differences in the cellular (monocytes, CD8+ T and NK cells) and soluble (cytokines, chemokines and immunoregulatory ligands) immune response in blood between Healthy Donors (HD), COVID19 and a group of patients with non-COVID19 respiratory tract infections (NON-COV-RTI). In addition, the immune response profile has been analyzed in COVID19 patients according to disease severity. Results: In comparison to HDs and patients with NON-COV-RTI, COVID19 patients show a heterogeneous immune response with the presence of both activated and exhausted CD8+ T and NK cells characterised by the expression of the immune checkpoint LAG3 and the presence of the adaptive NK cell subset. An increased frequency of adaptive NK cells and a reduction of NK cells expressing the activating receptors NKp30 and NKp46 correlated with disease severity. Although both activated and exhausted NK cells expressing LAG3 were increased in moderate/severe cases, unsupervised cell clustering analyses revealed a more complex scenario with single NK cells expressing more than one immune checkpoint (PD1, TIM3 and/or LAG3). A general increased level of inflammatory cytokines and chemokines was found in COVID19 patients, some of which like IL18, IL1RA, IL36B and IL31, IL2, IFNα and TNFα, CXCL10, CCL2 and CCL8 were able to differentiate between COVID19 and NON-COV-RTI and correlated with bad prognosis (IL2, TNFα, IL1RA, CCL2, CXCL10 and CXCL9). Notably, we found that soluble NKG2D ligands from the MIC and ULBPs families were increased in COVID19 compared to NON-COV-RTI and correlated with disease severity. Conclusions: Our results provide a detailed comprehensive analysis of the presence of activated and exhausted CD8+T, NK and monocyte cell subsets as well as extracellular inflammatory factors beyond cytokines/chemokines, specifically associated to COVID19. Importantly, multivariate analysis including clinical, demographical and immunological experimental variables have allowed us to reveal specific immune signatures to i) differentiate COVID19 from other infections and ii) predict disease severity and the risk of death.


Subject(s)
COVID-19/blood , COVID-19/immunology , Adult , Aged , Aged, 80 and over , Biomarkers/blood , CD8-Positive T-Lymphocytes/virology , COVID-19/mortality , Case-Control Studies , Chemokines/blood , Cytokines/blood , Female , Hospitalization , Humans , Killer Cells, Natural/virology , Logistic Models , Male , Middle Aged , Monocytes/virology , Prospective Studies , Respiratory Tract Infections/blood , Respiratory Tract Infections/immunology , Severity of Illness Index
7.
Cytokine ; 150: 155785, 2022 02.
Article in English | MEDLINE | ID: covidwho-1568622

ABSTRACT

SARS-CoV-2 and latent Mycobacterium tuberculosis infection are both highly co-prevalent in many parts of the globe. Whether exposure to SARS-CoV-2 influences the antigen specific immune responses in latent tuberculosis has not been investigated. We examined the baseline, mycobacterial antigen and mitogen induced cytokine and chemokine responses in latent tuberculosis (LTBI) individuals with or without SARS-CoV-2 seropositivity, LTBI negative individuals with SARS-CoV-2 seropositivity and healthy control (both LTBI and SARS-CoV-2 negative) individuals. Our results demonstrated that LTBI individuals with SARS-CoV-2 seropositivity (LTBI+/IgG +) were associated with increased levels of unstimulated and TB-antigen stimulated IFNγ, IL-2, TNFα, IL-17, IL-1ß, IL-6, IL-12, IL-4, CXCL1, CXCL9 and CXCL10 when compared to those without seropositivity (LTBI+/IgG-). In contrast, LTBI+/IgG+ individuals were associated with decreased levels of IL-5 and IL-10. No significant difference in the levels of cytokines/chemokines was observed upon mitogen stimulation between the groups. SARS-CoV-2 seropositivity was associated with enhanced unstimulated and TB-antigen stimulated but not mitogen stimulated production of cytokines and chemokines in LTBI+ compared to LTBI negative individuals. Finally, most of these significant differences were not observed when LTBI negative individuals with SARS-CoV-2 seropositivity and controls were examined. Our data clearly demonstrate that both baseline and TB - antigen induced cytokine responses are augmented in the presence of SARS-CoV-2 seropositivity, suggesting an augmenting effect of prior SARS-CoV-2 infection on the immune responses of LTBI individuals.


Subject(s)
COVID-19/complications , Cytokines/blood , Latent Tuberculosis/complications , SARS-CoV-2/immunology , Aged , Aged, 80 and over , Antibodies, Viral/blood , Antigens, Bacterial/immunology , COVID-19/immunology , Chemokines/blood , Female , Humans , Immunocompromised Host , Immunoglobulin G/blood , Inflammation , Latent Tuberculosis/blood , Latent Tuberculosis/immunology , Lymphocyte Activation/drug effects , Male , Middle Aged , Phytohemagglutinins/pharmacology , Seroconversion
8.
Sci Rep ; 11(1): 21514, 2021 11 02.
Article in English | MEDLINE | ID: covidwho-1500512

ABSTRACT

Coronavirus disease 2019 (COVID-19) is associated with systemic inflammation. A wide range of adipokines activities suggests they influence pathogenesis and infection course. The aim was to assess concentrations of chemerin, omentin, and vaspin among COVID-19 patients with an emphasis on adipokines relationship with COVID-19 severity, concomitant metabolic abnormalities and liver dysfunction. Serum chemerin, omentin and vaspin concentrations were measured in serum collected from 70 COVID-19 patients at the moment of admission to hospital, before any treatment was applied and 20 healthy controls. Serum chemerin and omentin concentrations were significantly decreased in COVID-19 patients compared to healthy volunteers (271.0 vs. 373.0 ng/ml; p < 0.001 and 482.1 vs. 814.3 ng/ml; p = 0.01, respectively). There were no correlations of analyzed adipokines with COVID-19 severity based on the presence of pneumonia, dyspnea, or necessity of Intensive Care Unit hospitalization (ICU). Liver test abnormalities did not influence adipokines levels. Elevated GGT activity was associated with ICU admission, presence of pneumonia and elevated concentrations of CRP, ferritin and interleukin 6. Chemerin and omentin depletion in COVID-19 patients suggests that this adipokines deficiency play influential role in disease pathogenesis. However, there was no relationship between lower adipokines level and frequency of COVID-19 symptoms as well as disease severity. The only predictive factor which could predispose to a more severe COVID-19 course, including the presence of pneumonia and ICU hospitalization, was GGT activity.


Subject(s)
Adipokines/blood , Chemokines/blood , Cytokines/blood , Lectins/blood , Serpins/blood , Aged , Body Mass Index , C-Reactive Protein/analysis , COVID-19/complications , COVID-19/metabolism , COVID-19/pathology , COVID-19/virology , Case-Control Studies , Female , GPI-Linked Proteins/blood , Hospitalization , Humans , Liver/metabolism , Male , Metabolic Syndrome/complications , Middle Aged , SARS-CoV-2/isolation & purification , gamma-Glutamyltransferase/metabolism
9.
Front Immunol ; 12: 752397, 2021.
Article in English | MEDLINE | ID: covidwho-1497081

ABSTRACT

Covaxin/BBV152 is a whole virion inactivated SARS-CoV-2 vaccine. The effect of prime-boost vaccination with Covaxin on systemic immune responses is not known. We investigated the effect of Covaxin on the plasma levels of a wide panel of cytokines and chemokines at baseline (M0) and at months 1 (M1), 2 (M2) and 3 (M3) following prime-boost vaccination in healthy volunteers. Our results demonstrate that Covaxin induces enhanced plasma levels of Type 1 cytokines (IFNγ, IL-2, TNFα), Type 2/regulatory cytokines (IL-4, IL-5, IL-10 and IL-13), Type 17 cytokine (IL-17A), other pro-inflammatory cytokines (IL-6, IL-12, IL-1α, IL-1ß) and other cytokines (IL-3 and IL-7) but diminished plasma levels of IL-25, IL-33, GM-CSF and Type 1 IFNs. Covaxin also induced enhanced plasma levels of CC chemokine (CCL4) and CXC chemokines (CXCL1, CXCL2 and CX3CL1) but diminished levels of CXCL10. Covaxin vaccination induces enhanced cytokine and chemokine responses as early as month 1, following prime-boost vaccination, indicating robust activation of innate and adaptive immune responses in vaccine recipients.


Subject(s)
COVID-19 Vaccines/immunology , SARS-CoV-2/physiology , Vaccines, Inactivated/immunology , Adaptive Immunity , Adult , Chemokines/blood , Cytokines/blood , Female , Healthy Volunteers , Humans , Immunity, Innate , Immunization , Immunization, Secondary , Male , Middle Aged , Vaccination , Young Adult
10.
PLoS Pathog ; 17(10): e1010025, 2021 10.
Article in English | MEDLINE | ID: covidwho-1496544

ABSTRACT

The global SARS-CoV-2 coronavirus pandemic continues to be devastating in many areas. Treatment options have been limited and convalescent donor plasma has been used by many centers to transfer passive neutralizing antibodies to patients with respiratory involvement. The results often vary by institution and are complicated by the nature and quality of the donor plasma itself, the timing of administration and the clinical aspects of the recipients. SARS-CoV-2 infection is known to be associated with an increase in the blood concentrations of several inflammatory cytokines/chemokines, as part of the overall immune response to the virus and consequential to mediated lung pathology. Some of these correlates contribute to the cytokine storm syndrome and acute respiratory distress syndrome, often resulting in fatality. A Phase IIa clinical trial at our institution using high neutralizing titer convalescent plasma transfer gave us the unique opportunity to study the elevations of correlates in the first 10 days after infusion. Plasma recipients were divided into hospitalized COVID-19 pneumonia patients who did not (Track 2) or did (Track 3) require mechanical ventilation. Several cytokines were elevated in the patients of each Track and some continued to rise through Day 10, while others initially increased and then subsided. Furthermore, elevations in MIP-1α, MIP-1ß and CRP correlated with disease progression of Track 2 recipients. Overall, our observations serve as a foundation for further study of these correlates and the identification of potential biomarkers to improve upon convalescent plasma therapy and to drive more successful patient outcomes.


Subject(s)
COVID-19/therapy , Chemokines/blood , Cytokines/blood , SARS-CoV-2 , Adult , Aged , Aged, 80 and over , Antibodies, Viral/blood , COVID-19/immunology , Female , Humans , Immunization, Passive , Immunoglobulin Isotypes/blood , Male , Middle Aged , COVID-19 Serotherapy
11.
Hamostaseologie ; 41(5): 379-385, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1483188

ABSTRACT

In 2019 first reports about a new human coronavirus emerged, which causes common cold symptoms as well as acute respiratory distress syndrome. The virus was identified as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and severe thrombotic events including deep vein thrombosis, pulmonary embolism, and microthrombi emerged as additional symptoms. Heart failure, myocardial infarction, myocarditis, and stroke have also been observed. As main mediator of thrombus formation, platelets became one of the key aspects in SARS-CoV-2 research. Platelets may also directly interact with SARS-CoV-2 and have been shown to carry the SARS-CoV-2 virus. Platelets can also facilitate the virus uptake by secretion of the subtilisin-like proprotein convertase furin. Cleavage of the SARS-CoV-2 spike protein by furin enhances binding capabilities and virus entry into various cell types. In COVID-19 patients, platelet count differs between mild and serious infections. Patients with mild symptoms have a slightly increased platelet count, whereas thrombocytopenia is a hallmark of severe COVID-19 infections. Low platelet count can be attributed to platelet apoptosis and the incorporation of platelets into microthrombi (peripheral consumption) and severe thrombotic events. The observed excessive formation of thrombi is due to hyperactivation of platelets caused by the infection. Various factors have been suggested in the activation of platelets in COVID-19, such as hypoxia, vessel damage, inflammatory factors, NETosis, SARS-CoV-2 interaction, autoimmune reactions, and autocrine activation. COVID-19 does alter chemokine and cytokine plasma concentrations. Platelet chemokine profiles are altered in COVID-19 and contribute to the described chemokine storms observed in severely ill COVID-19 patients.


Subject(s)
Blood Platelets/physiology , Blood Platelets/virology , COVID-19/blood , Blood Platelets/immunology , COVID-19/complications , COVID-19/immunology , Chemokines/blood , Cytokine Release Syndrome/blood , Cytokine Release Syndrome/etiology , Host Microbial Interactions/immunology , Host Microbial Interactions/physiology , Humans , Models, Biological , Pandemics , Platelet Activation/immunology , Platelet Activation/physiology , SARS-CoV-2/pathogenicity , Thrombosis/blood , Thrombosis/etiology
12.
Viruses ; 13(9)2021 09 08.
Article in English | MEDLINE | ID: covidwho-1468496

ABSTRACT

The incidence of dengue in Latin America has increased dramatically during the last decade. Understanding the pathogenic mechanisms in dengue is crucial for the identification of biomarkers for the triage of patients. We aimed to characterize the profile of cytokines (IFN-γ, TNF-α, IL-1ß, IL-6, IL-18 and IL-10), chemokines (CXCL8/IL-8, CCL2/MCP-1 and CXCL10/IP-10) and coagulation mediators (Fibrinogen, D-dimer, Tissue factor-TF, Tissue factor pathway inhibitor-TFPI and Thrombomodulin) during the dengue-4 epidemic in Brazil. Laboratory-confirmed dengue cases had higher levels of TNF-α (p < 0.001), IL-6 (p = 0.005), IL-10 (p < 0.001), IL-18 (p = 0.001), CXCL8/IL-8 (p < 0.001), CCL2/MCP-1 (p < 0.001), CXCL10/IP-10 (p = 0.001), fibrinogen (p = 0.037), D-dimer (p = 0.01) and TFPI (p = 0.042) and lower levels of TF (p = 0.042) compared to healthy controls. A principal component analysis (PCA) distinguished between two profiles of mediators of inflammation and coagulation: protective (TNF-α, IL-1ß and CXCL8/IL-8) and pathological (IL-6, TF and TFPI). Lastly, multivariate logistic regression analysis identified high aspartate aminotransferase-to-platelet ratio index (APRI) as independent risk factors associated with severity (adjusted OR: 1.33; 95% CI 1.03-1.71; p = 0.027), the area under the receiver operating characteristics curve (AUC) was 0.775 (95% CI 0.681-0.869) and an optimal cutoff value was 1.4 (sensitivity: 76%; specificity: 79%), so it could be a useful marker for the triage of patients attending primary care centers.


Subject(s)
Blood Coagulation Factors/immunology , Chemokines/blood , Cytokines/blood , Dengue Virus/immunology , Dengue/immunology , Severity of Illness Index , Adult , Biomarkers/blood , Blood Coagulation Factors/classification , Brazil , Chemokines/classification , Chemokines/immunology , Cytokines/classification , Cytokines/immunology , Dengue/blood , Female , Humans , Inflammation , Male , Middle Aged
13.
J Med Virol ; 93(10): 5805-5815, 2021 10.
Article in English | MEDLINE | ID: covidwho-1453606

ABSTRACT

Aggressive immune response, due to overexpressed proinflammatory molecules, has been characterized in coronavirus disease 2019 (COVID-19) patients. Some of those mediators have a dual and opposite role on immune systems at play behind differential disease severities. We investigated the expression of some cytokines and chemokines in COVID-19 patients in Bangladesh. We diagnosed the patients by detecting severe acute respiratory syndrome coronavirus 2 RNA in nasal swab samples by the real-time RT-PCR method. Thirty adult patients were preselected based on their disease severities and grouped into mild, moderate, and severe cases. Nine healthy volunteers participated in this study as a control. Relative expression of nine cytokines/chemokine in total leukocytes was semi-quantified in SYBRgreen-based real-time quantitative reverse-transcriptase polymerase chain reaction. We performed statistical tests on transformed log data using SPSS 24.0. At the onset of symptoms (Day 1), angiotensin-converting enzyme 2 (ACE2) (p < 0.05) and interleukin (IL)-6 (p > 0.05) were upregulated in all COVID-19 groups, although the expression levels did not significantly correlate with disease severities. However, expressions of IL-6, monocyte chemotactic protein-1, macrophage inflammatory protein-1α, tumor necrosis factor-α (TNF-α), RANTES (regulated upon activation, normal T cell expressed and secreted), and ACE2, on Day 14, were positively correlated with disease severities. Relative viral load at Day 1 showed no significant correlation with cytokine expression but had a significant positive correlation with RANTES and ACE2 expression on Day 14 (p < 0.05). Male patients had a higher level of IL-6 than female patients on Day 1 (p < 0.05). All COVID-19 patients showed upregulated cytokines and chemokines on Day 14 compared to Day 1 except TNF-α. Female patients had a higher expression of ACE2 and IL-12 on Day 14. Upregulated cytokines/chemokines at the convalescent stage, especially IL-6, may help in targeting anticytokine therapy in post-COVID-19 patients' management.


Subject(s)
COVID-19/diagnosis , Cytokines/blood , Adult , Bangladesh/epidemiology , COVID-19/epidemiology , COVID-19/immunology , COVID-19/virology , Chemokines/blood , Female , Humans , Male , Middle Aged , SARS-CoV-2/isolation & purification , Severity of Illness Index , Viral Load
14.
Front Immunol ; 12: 681516, 2021.
Article in English | MEDLINE | ID: covidwho-1399136

ABSTRACT

Coronavirus disease 2019 (COVID-19) broke out and then became a global epidemic at the end of 2019. With the increasing number of deaths, early identification of disease severity and interpretation of pathogenesis are very important. Aiming to identify biomarkers for disease severity and progression of COVID-19, 75 COVID-19 patients, 34 healthy controls and 23 patients with pandemic influenza A(H1N1) were recruited in this study. Using liquid chip technology, 48 cytokines and chemokines were examined, among which 33 were significantly elevated in COVID-19 patients compared with healthy controls. HGF and IL-1ß were strongly associated with APACHE II score in the first week after disease onset. IP-10, HGF and IL-10 were correlated positively with virus titers. Cytokines were significantly correlated with creatinine, troponin I, international normalized ratio and procalcitonin within two weeks after disease onset. Univariate analyses were carried out, and 6 cytokines including G-CSF, HGF, IL-10, IL-18, M-CSF and SCGF-ß were found to be associated with the severity of COVID-19. 11 kinds of cytokines could predict the severity of COVID-19, among which IP-10 and M-CSF were excellent predictors for disease severity. In conclusion, the levels of cytokines in COVID-19 were significantly correlated with the severity of the disease in the early stage, and serum cytokines could be used as warning indicators of the severity and progression of COVID-19. Early stratification of disease and intervention to reduce hypercytokinaemia may improve the prognosis of COVID-19 patients.


Subject(s)
COVID-19/immunology , Cytokines/genetics , Cytokines/immunology , SARS-CoV-2/immunology , Severity of Illness Index , Transcriptome/immunology , Adult , Aged , Biomarkers/blood , Chemokines/blood , Chemokines/genetics , Chemokines/immunology , Cytokines/blood , Female , Hospitalization/statistics & numerical data , Humans , Influenza, Human/blood , Influenza, Human/immunology , Male , Middle Aged
15.
J Infect Dis ; 224(5): 777-782, 2021 09 01.
Article in English | MEDLINE | ID: covidwho-1381012

ABSTRACT

We analyzed plasma levels of interferons (IFNs) and cytokines, and expression of IFN-stimulated genes in peripheral blood mononuclear cells in patients with coronavirus disease 2019 of varying disease severity. Patients hospitalized with mild disease exhibited transient type I IFN responses, while intensive care unit patients had prolonged type I IFN responses. Type II IFN responses were compromised in intensive care unit patients. Type III IFN responses were induced in the early phase of infection, even in convalescent patients. These results highlight the importance of early type I and III IFN responses in controlling coronavirus disease 2019 progression.


Subject(s)
COVID-19/immunology , Interferon Type I/immunology , Interferon-gamma/immunology , Interferons/immunology , COVID-19/blood , Chemokines/blood , Cytokines/blood , Humans , Interferon Type I/blood , Interferon Type I/genetics , Interferon-gamma/blood , Interferon-gamma/genetics , Interferons/blood , Leukocytes, Mononuclear/immunology , SARS-CoV-2/isolation & purification , Interferon Lambda
16.
PLoS One ; 16(8): e0256784, 2021.
Article in English | MEDLINE | ID: covidwho-1378138

ABSTRACT

Viral sepsis has been proposed as an accurate term to describe all multisystemic dysregulations and clinical findings in severe and critically ill COVID-19 patients. The adoption of this term may help the implementation of more accurate strategies of early diagnosis, prognosis, and in-hospital treatment. We accurately quantified 110 metabolites using targeted metabolomics, and 13 cytokines/chemokines in plasma samples of 121 COVID-19 patients with different levels of severity, and 37 non-COVID-19 individuals. Analyses revealed an integrated host-dependent dysregulation of inflammatory cytokines, neutrophil activation chemokines, glycolysis, mitochondrial metabolism, amino acid metabolism, polyamine synthesis, and lipid metabolism typical of sepsis processes distinctive of a mild disease. Dysregulated metabolites and cytokines/chemokines showed differential correlation patterns in mild and critically ill patients, indicating a crosstalk between metabolism and hyperinflammation. Using multivariate analysis, powerful models for diagnosis and prognosis of COVID-19 induced sepsis were generated, as well as for mortality prediction among septic patients. A metabolite panel made of kynurenine/tryptophan ratio, IL-6, LysoPC a C18:2, and phenylalanine discriminated non-COVID-19 from sepsis patients with an area under the curve (AUC (95%CI)) of 0.991 (0.986-0.995), with sensitivity of 0.978 (0.963-0.992) and specificity of 0.920 (0.890-0.949). The panel that included C10:2, IL-6, NLR, and C5 discriminated mild patients from sepsis patients with an AUC (95%CI) of 0.965 (0.952-0.977), with sensitivity of 0.993(0.984-1.000) and specificity of 0.851 (0.815-0.887). The panel with citric acid, LysoPC a C28:1, neutrophil-lymphocyte ratio (NLR) and kynurenine/tryptophan ratio discriminated severe patients from sepsis patients with an AUC (95%CI) of 0.829 (0.800-0.858), with sensitivity of 0.738 (0.695-0.781) and specificity of 0.781 (0.735-0.827). Septic patients who survived were different from those that did not survive with a model consisting of hippuric acid, along with the presence of Type II diabetes, with an AUC (95%CI) of 0.831 (0.788-0.874), with sensitivity of 0.765 (0.697-0.832) and specificity of 0.817 (0.770-0.865).


Subject(s)
COVID-19/pathology , Metabolomics , Sepsis/diagnosis , Adult , Area Under Curve , COVID-19/complications , COVID-19/virology , Chemokines/blood , Cytokines/blood , Female , Humans , Kynurenine/blood , Lymphocytes/cytology , Male , Middle Aged , Neutrophils/cytology , ROC Curve , Retrospective Studies , Risk Factors , SARS-CoV-2/isolation & purification , Sepsis/etiology , Severity of Illness Index , Tryptophan/blood
17.
Nature ; 588(7837): 315-320, 2020 12.
Article in English | MEDLINE | ID: covidwho-1337122

ABSTRACT

There is increasing evidence that coronavirus disease 2019 (COVID-19) produces more severe symptoms and higher mortality among men than among women1-5. However, whether immune responses against severe acute respiratory syndrome coronavirus (SARS-CoV-2) differ between sexes, and whether such differences correlate with the sex difference in the disease course of COVID-19, is currently unknown. Here we examined sex differences in viral loads, SARS-CoV-2-specific antibody titres, plasma cytokines and blood-cell phenotyping in patients with moderate COVID-19 who had not received immunomodulatory medications. Male patients had higher plasma levels of innate immune cytokines such as IL-8 and IL-18 along with more robust induction of non-classical monocytes. By contrast, female patients had more robust T cell activation than male patients during SARS-CoV-2 infection. Notably, we found that a poor T cell response negatively correlated with patients' age and was associated with worse disease outcome in male patients, but not in female patients. By contrast, higher levels of innate immune cytokines were associated with worse disease progression in female patients, but not in male patients. These findings provide a possible explanation for the observed sex biases in COVID-19, and provide an important basis for the development of a sex-based approach to the treatment and care of male and female patients with COVID-19.


Subject(s)
COVID-19/immunology , Cytokines/immunology , Immunity, Innate/immunology , SARS-CoV-2/immunology , Sex Characteristics , T-Lymphocytes/immunology , COVID-19/blood , COVID-19/virology , Chemokines/blood , Chemokines/immunology , Cohort Studies , Cytokines/blood , Disease Progression , Female , Humans , Lymphocyte Activation , Male , Monocytes/immunology , Phenotype , Prognosis , RNA, Viral/analysis , SARS-CoV-2/pathogenicity , Viral Load
18.
Life Sci Alliance ; 4(9)2021 09.
Article in English | MEDLINE | ID: covidwho-1332524

ABSTRACT

The use of high-dose of intravenous immunoglobulins (IVIGs) as immunomodulators for the treatment of COVID-19-affected individuals has shown promising results. IVIG reduced inflammation in these patients, who progressively restored respiratory function. However, little is known about how they may modulate immune responses in COVID-19 individuals. Here, we have analyzed the levels of 41 inflammatory biomarkers in plasma samples obtained at day 0 (pretreatment initiation), 3, 7, and 14 from five hospitalized COVID-19 patients treated with a 5-d course of 400 mg/kg/d of IVIG. The plasmatic levels of several cytokines (Tumor Necrosis Factor, IL-10, IL-5, and IL-7), chemokines (macrophage inflammatory protein-1α), growth/tissue repairing factors (hepatic growth factor), complement activation (C5a), and intestinal damage such as Fatty acid-binding protein 2 and LPS-binding protein showed a progressive decreasing trend during the next 2 wk after treatment initiation. This trend was not observed in IVIG-untreated COVID-19 patients. Thus, the administration of high-dose IVIG to hospitalized COVID-19 patients may improve their clinical evolution by modulating their hyperinflammatory and immunosuppressive status.


Subject(s)
COVID-19/therapy , Immunoglobulins, Intravenous/therapeutic use , Administration, Intravenous , Adult , Aged , Biomarkers/blood , COVID-19/blood , COVID-19/immunology , COVID-19/virology , Chemokines/blood , Cytokines/blood , Female , Humans , Immunity/immunology , Immunoglobulins/immunology , Immunoglobulins/therapeutic use , Immunoglobulins, Intravenous/immunology , Inflammation/blood , Inflammation/therapy , Inflammation/virology , Male , Middle Aged , SARS-CoV-2/isolation & purification
19.
Front Immunol ; 12: 668725, 2021.
Article in English | MEDLINE | ID: covidwho-1317223

ABSTRACT

COVID-19 severity due to innate immunity dysregulation accounts for prolonged hospitalization, critical complications, and mortality. Severe SARS-CoV-2 infections involve the complement pathway activation for cytokine storm development. Nevertheless, the role of complement in COVID-19 immunopathology, complement-modulating treatment strategies against COVID-19, and the complement and SARS-CoV-2 interaction with clinical disease outcomes remain elusive. This study investigated the potential changes in complement signaling, and the associated inflammatory mediators, in mild-to-critical COVID-19 patients and their clinical outcomes. A total of 53 patients infected with SARS-CoV-2 were enrolled in the study (26 critical and 27 mild cases), and additional 18 healthy control patients were also included. Complement proteins and inflammatory cytokines and chemokines were measured in the sera of patients with COVID-19 as well as healthy controls by specific enzyme-linked immunosorbent assay. C3a, C5a, and factor P (properdin), as well as interleukin (IL)-1ß, IL-6, IL-8, tumor necrosis factor (TNF)-α, and IgM antibody levels, were higher in critical COVID-19 patients compared to mild COVID-19 patients. Additionally, compared to the mild COVID-19 patients, factor I and C4-BP levels were significantly decreased in the critical COVID-19 patients. Meanwhile, RANTES levels were significantly higher in the mild patients compared to critical patients. Furthermore, the critical COVID-19 intra-group analysis showed significantly higher C5a, C3a, and factor P levels in the critical COVID-19 non-survival group than in the survival group. Additionally, IL-1ß, IL-6, and IL-8 were significantly upregulated in the critical COVID-19 non-survival group compared to the survival group. Finally, C5a, C3a, factor P, and serum IL-1ß, IL-6, and IL-8 levels positively correlated with critical COVID-19 in-hospital deaths. These findings highlight the potential prognostic utility of the complement system for predicting COVID-19 severity and mortality while suggesting that complement anaphylatoxins and inflammatory cytokines are potential treatment targets against COVID-19.


Subject(s)
Anaphylatoxins/analysis , COVID-19/blood , COVID-19/mortality , Chemokines/blood , Hospital Mortality , SARS-CoV-2/genetics , Severity of Illness Index , Adolescent , Adult , Aged , Aged, 80 and over , Biomarkers/blood , COVID-19/virology , Case-Control Studies , Cytokine Release Syndrome , Female , Humans , Male , Middle Aged , Prognosis , Young Adult
20.
PLoS One ; 16(7): e0254367, 2021.
Article in English | MEDLINE | ID: covidwho-1304472

ABSTRACT

COVID-19 serological test must have high sensitivity as well as specificity to rule out cross-reactivity with common coronaviruses (HCoVs). We have developed a quantitative multiplex test, measuring antibodies against spike (S) proteins of SARS-CoV-2, SARS-CoV, MERS-CoV, and common human coronavirus strains (229E, NL63, OC43, HKU1), and nucleocapsid (N) protein of SARS-CoV viruses. Receptor binding domain of S protein of SARS-CoV-2 (S-RBD), and N protein, demonstrated sensitivity (94% and 92.5%, respectively) in COVID-19 patients (n = 53), with 98% specificity in non-COVID-19 respiratory-disease (n = 98), and healthy-controls (n = 129). Anti S-RBD and N antibodies appeared five to ten days post-onset of symptoms, peaking at approximately four weeks. The appearance of IgG and IgM coincided while IgG subtypes, IgG1 and IgG3 appeared soon after the total IgG; IgG2 and IgG4 remained undetectable. Several inflammatory cytokines/chemokines were found to be elevated in many COVID-19 patients (e.g., Eotaxin, Gro-α, CXCL-10 (IP-10), RANTES (CCL5), IL-2Rα, MCP-1, and SCGF-b); CXCL-10 was elevated in all. In contrast to antibody titers, levels of CXCL-10 decreased with the improvement in patient health suggesting it as a candidate for disease resolution. Importantly, anti-N antibodies appear before S-RBD and differentiate between vaccinated and infected people-current vaccines (and several in the pipeline) are S protein-based.


Subject(s)
Antibodies, Viral , COVID-19 , Chemokines , Coronavirus Nucleocapsid Proteins , Immunoglobulin G , Immunoglobulin M , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Adult , Animals , Antibodies, Viral/blood , Antibodies, Viral/immunology , COVID-19/blood , COVID-19/immunology , Chemokines/blood , Chemokines/immunology , Coronavirus Nucleocapsid Proteins/blood , Coronavirus Nucleocapsid Proteins/immunology , Female , Humans , Immunoglobulin G/blood , Immunoglobulin G/immunology , Immunoglobulin M/blood , Immunoglobulin M/immunology , Macaca mulatta , Male , Middle Aged , Phosphoproteins/blood , Phosphoproteins/immunology , Rabbits , SARS-CoV-2/immunology , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/blood , Spike Glycoprotein, Coronavirus/immunology
SELECTION OF CITATIONS
SEARCH DETAIL